Chapter 4

Possible future power mixes: Assessment using the E3ME and FTT:Power models

> Yuki Ogawa Jean-Francois Mercure Soocheol Lee

Contents

- 1. Objective of the work
- 2. Scenario assumptions
- 3. Results
- 4. Conclusion

1. Objective of the work

Qualitative analysis of the impact from possible future power mixes in East Asia (China, Japan, Korea, Taiwan) using E3ME and FTT:Power

Looking into...

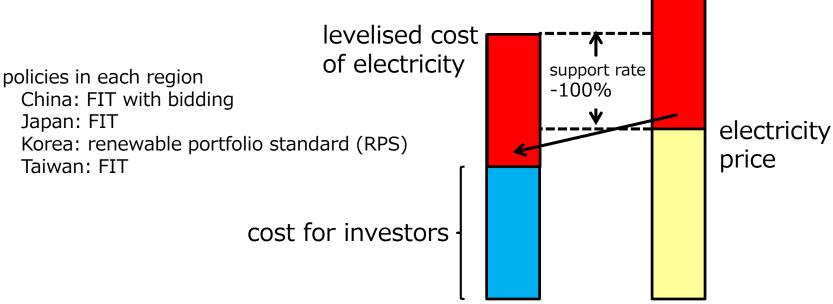
- Environment (CO₂ emissions)
- Economy (GDP, employment etc)

Scenarios are...

- Constraint on nuclear power
- Constraint on coal-fired power

2. Scenario assumptions

Baseline


Reference case Common assumptions through all scenarios

Scenarios

Baseline

Support for renewable energy

- Supported technology: representing policies in each region
- Support scheme:
 all treated as feed-in tarrif (FIT)

Baseline

Exogenous capacity

- ○Nuclear power:investment choice is purely political issue→setting capacity according to plans in each region
- Oil-fired power:

 IEA member country (JA, KR) won't add new cap.

 same for Taiwan

<u>**(Total demand – generation from above)</u>

would be solved with FTT:Power

Scenarios

Assumptions: analyse until 2030 hold all assump. in the baseline

S1: Constraint on nuclear power

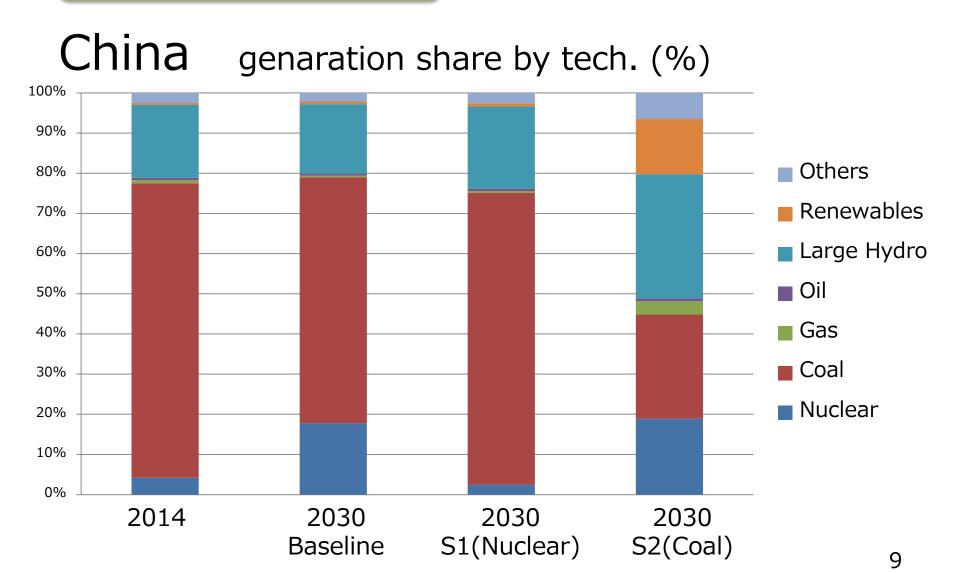
CN, KR: not allowing the increase of capacity share of nuclear from 2015

JA: 0 share of nuclear from 2015

(TW is decreasing its share of nuclear in baseline)

S2: Constraint on coal-fired power

not allowing the increase of capacity share of coal in each region from 2015

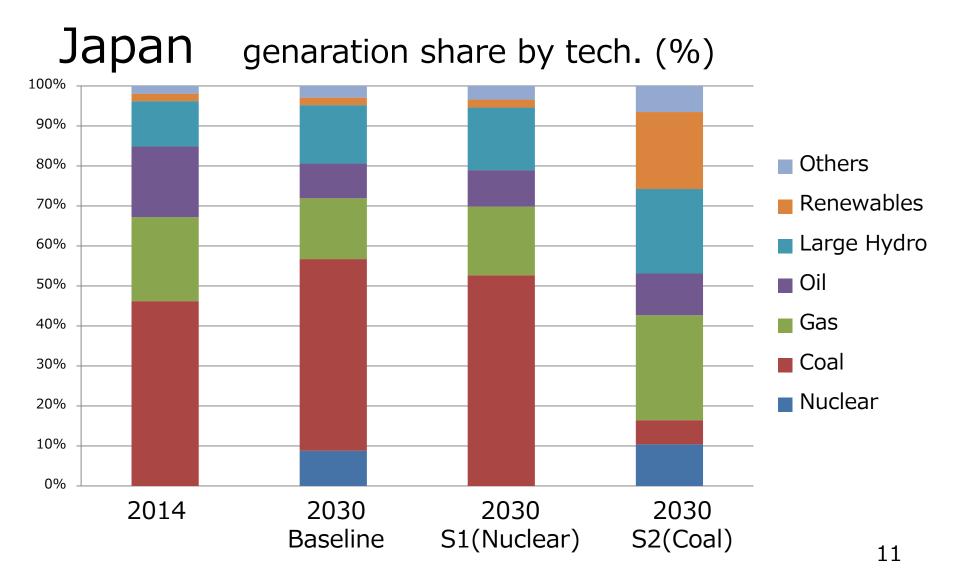

4. Results

Individual implementation

Simultaneous implementation

looking in to the effect of harmonising policies

Individual results (1)

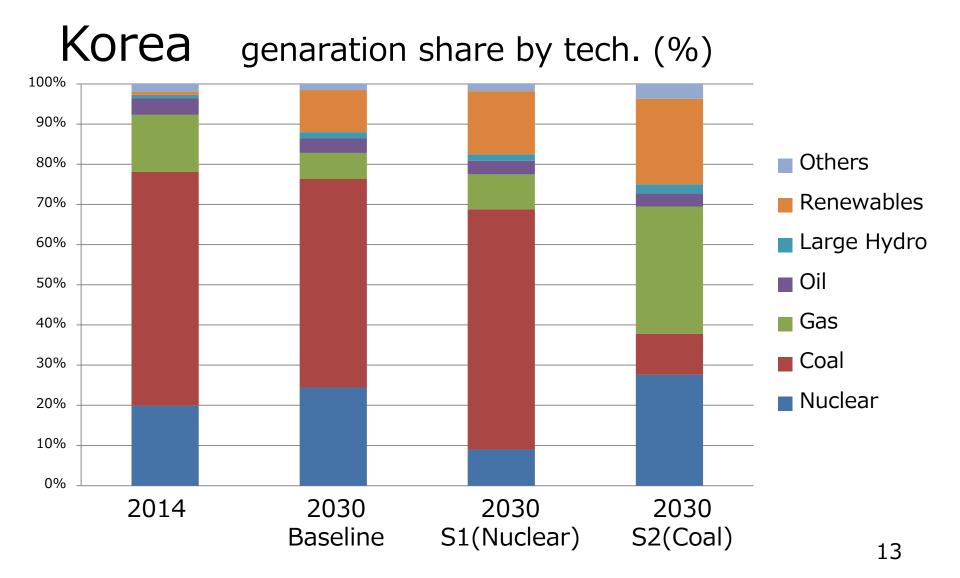


Individual results (2)

China

	S1(Nuclear)	S2(Coal)
GDP	-0.16	1.75
CO ₂	9.24	-21.76
Employment	0.02	0.09
Consumption	0.05	0.71
Investment	-0.17	5.25
Export	-0.03	0.30
Import	0.47	0.28
Consumer price	-0.09	0.42
Electricity price	-0.23	59.30
Nominal wage	-0.03	0.88
Electricity demand	0.06	-5.84

Individual results (3)

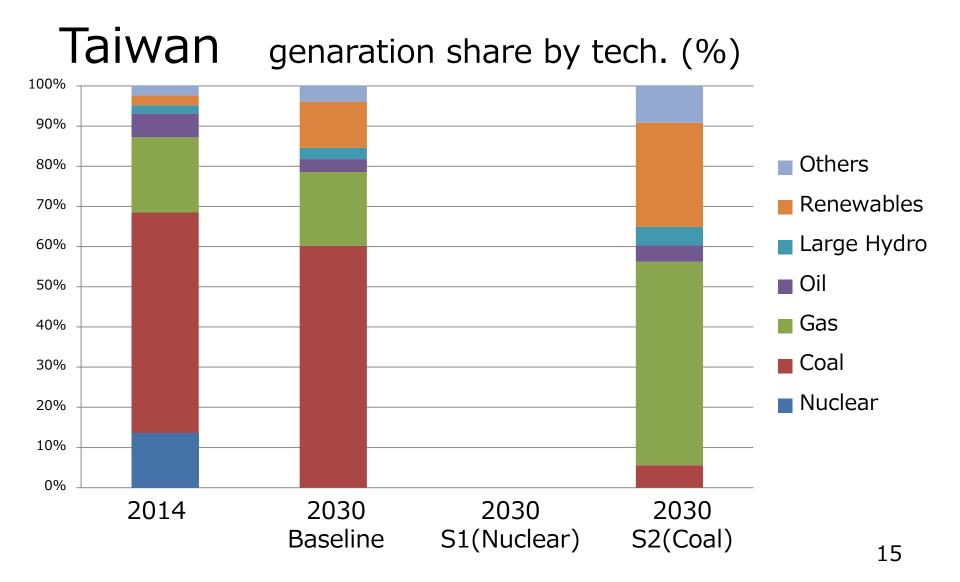


Individual results (4)

Japan

	S1(Nuclear)	S2(Coal)
GDP	-0.57	-0.49
CO ₂	2.93	-27.68
Employment	-0.18	-0.57
Consumption	-0.74	-2.59
Investment	-0.08	-0.61
Export	-0.05	0.01
Import	0.04	-4.69
Consumer price	0.79	2.86
Electricity price	14.46	59.16
Nominal wage	0.46	1.24
Electricity demand	-4.95	-15.44

Individual results (5)



Individual results (6)

Korea

	S1(Nuclear)	S2(Coal)
GDP	0.32	0.01
CO ₂	10.68	-27.76
Employment	0.05	-0.02
Consumption	-0.29	-1.27
Investment	2.23	2.14
Export	0.02	0.29
Import	0.10	0.13
Consumer price	0.37	1.63
Electricity price	14.57	55.98
Nominal wage	0.11	0.97
Electricity demand	-3.06	-11.05

Individual results (7)

Individual results (8)

Taiwan

	S1(Nuclear)		S2(Coal)
GDP		-	-0.08
CO ₂		-	-42.78
Employment		-	0.08
Consumption		-	-1.50
Investment		-	2.16
Export		-	0.80
Import		-	0.07
Consumer price		-	1.81
Electricity price		-	74.84
Nominal wage		-	1.00
Electricity demand		-	-14.79

Harmony of Policy

Comparison between individual implementation and harmony of policy in four regions

	S1 (Nuclear)		S2 (Coal)	
	Individual	Harmony in four regions	Individual	Harmony in four regions
CN	-0.16	-0.16	1.76	1.75
JA	-0.57	-0.57	-0.56	-0.49
KR	0.32	0.32	-0.12	0.01
TW	-	0.00	-0.28	-0.08

5. Conclusion

Oconstraints on nuclear (S1) increases CO2 emissions to some extent

- Constraints on coal (S1)decreases CO2 emissions to some extent
- Direct regulation on coal may not be realistic carbon pricing should have similar effect

5. Conclusion (cont.)

Impact to the economies are small in each scenario positive: fuel import decrease, investment increase negative: higher electricity price

 ○Harmonised constraints have smaller negative effect to the economies than individual constraints
 ←especially for JA, KR, TW, facing severe international competition

