

Nuclear Power in Japan

Chapter 7

Hector Pollitt, Cambridge Econometrics

September 2014

Outline of the presentation

- Background the previous paper
- Results from E3ME
- Comparison with CGE modelling

Overview of the Chapter

 The chapter builds on the paper that was published in Energy Policy:

Pollitt, H, Soocheol Lee, Seung-Joon Park and Kazuhiro Ueta (2014) 'An Economic and Environmental Assessment of Future Electricity Generation Mixes in Japan - An assessment using the E3MG macroeconometric model', Energy Policy, Volume 67 (2014), pp 243-254.

Comparison with the CGE Analysis

- Previously 4 CGE models were applied to assess the scenarios
- E3ME was applied to assess the same scenarios, and also the interaction with different carbon targets

			2010			20.50		
				0% NPP		15% NPP	20-25% NPP	
				before additional measures	after additional measures			
Composition of Electricity Generation	NPP share		26%	0% (-25%)	0% (-25%)	15% (-10%)	20-25% (-5%1%)	
	Renewables		10%	30% (+20%)	35% (+25%)	30% (+20%)	30-25% (+20-+15%)	
	Combustion		63%	70% (+5%)	65% (+0%)	55% (-10%)	50% (-15%)	
		Coal	24%	28% (+4%)	21% (-3%)	20% (-4%)	18% (-6%)	
		LNG	29%	36% (+7%)	38% (+9%)	29% (+0%)	27% (-2%)	
		Oil	10%	6% (-4%)	6% (-4%)	5% (-5%)	5% (-5%)	
Energy Conservation	Electricity Generation		1.1 trn kWh	1.0 trn kWh	1.0 trn kWh	1.0 trn kWh	1.0 trn kWh	
	End Energy Consumption		0.39 bn kL	0.31 bn kL	0.30 bn kL	0.31 bn kL	0.31 bn kL	
NPP	Dependence on N	IPP	26%	0% (-25%)	0% (-25%)	15% (-10%)	20-25% (-5%-1%)	
Energy Security	Dependence on Fossil Fuels		63%	70% (+5%)	65% (+0%)	55% (-10%)	50% (-15%)	
	Imported fuel values (total primary energy supply)		17 trn yen	17 trn yen	16 trn Yen	16 trn yen	15 trn yen	
				Promoting strong	ger shift to gas			
Climate Policy	Renewable Energy	y Share	10%	30% (+20%)	35% (+25%)	30% (+20%)	30-25% (+20-+15%)	
	Non-Fossil Energy	/ Share	37%	30% (-5%)	35% (+0%)	45% (+10%)	50% (+15%)	
	Coal to Gas in combustion power plants including CHP		1: 1.2	1:1.3	1: 1.8	1: 1.5	1: 1.5	
	GHG emission	2030	-	-16%	-23%	-23%	-25%	
		2020	-	+0% (0%NPP), -5% (14% NPP)	-0% (0% NPP) -7%(14%NPP)	-9% (21% NPP)	-10-11% (23-26% NPP)	
	Generation Costs (yen/kWh)		8.6	-	15.1 (+6.5)	14.1 (+5.5)	14.1 (+5.5)	
	Transmission Inve (trn yen, accumula	stment ated to 2030)	-	3.4	5.2	3.4	3.4-2.7	
	Energy Saving Investment (trn yen, accumulated to 2030)		-	80 (saving 60)	100 (saving 70)	80 (saving 60)	80 (saving 60)	
	Household electric	city price in 2030 (10	thousand yen/month)					
	NIES			-	1.4	1.4	1.4	
	Osaka Univ.		1.0	-	1.5	1.4	1.2	
	Keio Univ.			-	2.1	1.8	1.8	
	RITE			-	2.0	1.8	1.8	
	Real GDP in 2030	(trn yen)						
	NIES		511	636(2030 BAU)	628	634	634	
	Osaka Univ.			624(2030 BAU)	608	611	614	
	Keio Univ.			625(2030 BAU)	609	616	617	
	RITE			609(2030 BAU)	564	579	581	

E3ME Results – GDP

E3ME Results – Carbon Prices

	Nuclear 2030	share	in	CO ₂ emissions in 2020 compared to 1990 (%)	Carbon tax rate (yen / t- CO ₂) in 2020
N25Cn		2	5%	-3.8	0
N15Cn		1()%	-2.7	0
N00Cn		()%	-1.1	0
N25C10		2	5%	-10.0	5,582
N15C10		1()%	-10.0	7,462
N00C10		()%	-10.0	9,285
N25C15		2	5%	-15.0	14,773
N15C15		1()%	-15.0	17,292
N00C15		()%	-15.0	20,262
N25C25		2	5%	-25.0	45,034
N15C25		1()%	-25.0	49,801
N00C25		()%	-25.0	56,838

Conclusions

- The CGE models predict that a lower nuclear share leads to a small loss of GDP compared to base
- E3ME predicts virtually no change
- E3ME suggests that a higher carbon target could lead to a positive GDP effect, but with very high carbon prices required – especially with a low nuclear share

