

Relieving agricultural GHG stress: the transition of staple food strategy in China

Beibei Liu, Ph.D.

Associate Professor

School of Environment, Nanjing University

August, 2017

Challenges of GHGs emission of Agriculture and Waste

*Emission by source: In million-tons of methane per year, average 2003-2012

**Others: Geological, lakes, termites, oceans, permafrost

Source: Global carbon project

Crop and livestock production is responsible for up to **1/3** total anthropogenic GHG emissions. (Vermeulen S. J., et al, 2013)

China accounts for 17% of global agricultural emissions. (Kimberly M. C., et al, 2017)

Currently agriculture GHGs are not well studied on regional and national level.

- Difference on energy and material input
- ✓ Geographical difference
- ✓ Crop management
- ✓ Crop structure

Transition of Staple Food strategy in China

Rice
Wheat
Maize

Fig1. Yields (10 thousand tons yr-1) for 3 staple crops

Fig2. Yields (10 thousand tons yr-1) for 4 staple crops

Ratio of potato : 12.7%(2006)→14.5%(2015) Potato yield Increases: 47.1%(2006-2015)

Potato staple food strategy in China Potato staple food development strategy seminar 2015.01 马铃薯主粮化发展战略研讨会

_{农业部关于推进马铃薯产业开发的指导意见} Potato industry development instructions 2016.04

北京、河北、内蒙古、黑龙江、上海、浙江、江西、湖北、广东、四川、贵州、陕西、甘肃、宁夏 等省、自治区、直辖市农业(农牧)厅(委、局):

为贯彻落实中央1号文件精神和新形势下国家粮食安全战略部署,推进农业供给侧结构性改革, 转变农业发展方式,加快农业转型升级,把马铃薯作为主粮产品进行产业化开发,树立健康理念, 科学引导消费,促进稳粮增收、提质增效和农业可持续发展。现就推进马铃薯产业开发提出如下意见。

Benefit of potato staple food

- more food for the population
- more healthy for consumers
- more income for farmers

Agriculture faces great challenges to ensure food security by increasing yields while reducing environmental costs.

Research Question

Will the transition of staple food strategy in China contribute to GHG reductions? What about in global level?

✓ Difference on energy and material input
 ✓ Yield difference
 ✓ Crop management
 ✓ Crop structure
 ✓ GHG leakage

GHGs emission of planting systems

Life Cycle Analysis

Uncertainty (McKone T. E., et al, 2011)

System boundary (Suh, S., et al, 2004; Suh, S., et al, 2005)

Emission factors (Chen H., et al, 2013; Hu N., et al, 2016; Xu S.P., et al, 2007)

Crop management practices (Tilman D., et al, 2006; Chen X., et al, 2014)

Main Data source

Crops	Region	Data	Sources
Rice Wheat	31 provinces (mostly in city level) in China mainland	Area harvested Production	China Rural Statistical Yearbook
Maize Potato		Input of fertilizer and plastic film	Compilation of the National Agricultural Costs and Returns

GHGs emission of planting systems

Life Cycle Analysis

System boundary & emission components

- 1. CH₄ emission during crop planting
- N₂O emission during fertilizer application
- GHG emissions during the production and transportation of agricultural inputs
- Uncertainty identification
- CH₄ and N₂O emission factor
- Crop management practices
- Function unit
- Production intensity (Mg CO₂e M kcal⁻¹)

GHG leakage due to staple food strategy

Main Data source

Crops	Region	Data	Sources
Rice	8 major import countries	Rice import rate	China customs information website
		Area harvested Production	FAOSTAT
		Applied fertilization rate	IFA

Introduction

Emissions status quo in 2015

• Total staple food GHG emissions in China:

546.90 \pm 32.69 Tg CO₂e yr⁻¹ (4.4 \pm 0.2% of anthropogenic emissions)

• Production intensity of staple food in China:

0.45 $\pm~$ 0.13 Mg CO_2e M kcal^-1

Emissions status quo in 2015

Fig4. Staple food greenhouse gas emissions and intensities of each crops in China of each regions

Highest production intensity:

• South China

(rice plantation)

Northwest, Northeast, and

North China

(high fertilization applied rate)

Fig5. Distribution of production intensity (g CO_2 -eq kcal⁻¹) from staple foods in 2015

Emissions status quo in 2015

Fig6. Distribution of production intensity (g CO_2 -eq kcal⁻¹) from each staple foods in 2015

transition of staple food structure from 4 crops

Fig8. GHG emission intensity (g CO₂-eq kcal⁻¹) for with or not crop management for 3 crops

Fig9. GHG emissions (Tg CO_2 -eq yr⁻¹) of each scenario from 4 crops in 2020

Fig10. GHG emissions intensity (g CO₂-eq kcal⁻¹) of rice for import countries

• GHG leakage:

30.10 - 42.12 Tg CO₂e yr⁻¹ (exceed emissions reductions in native China)

Conclusion

- In 2015, total staple food GHG emissions in China was 546.90±32.69 Tg CO₂e yr⁻¹; production intensity of staple food in China was 0.45±0.13 Mg CO₂e M kcal⁻¹.
- After transition of staple food structure, native GHG emissions of staple food in 2020 might reduce 25.06 Tg CO₂e yr⁻¹ (4.21±2.11%); further reduction (33.3-40.4%) could be achieved with crop management improvement.
- GHG leakage due to potato staple food strategy could achieve 30.10-42.12 Tg CO₂e yr⁻¹, which may exceed emissions reductions in native China.

Thank You! Lbeibei@nju.edu.cn